Miura

SIMULTANEOUS ANALYSIS FOR DIOXINS, PCBS AND PBDES WITH A FULLY AUTOMATED SAMPLE PREPARATION SYSTEM (II: VALIDATION)

Hiroyuki FUJITA ${ }^{1 *}$, Kenji INABA ${ }^{1}$, Kazuki YAMAMOTO ${ }^{2}$
1: MIURA CO., LTD., 864-1, Hojotsuji, Matsuyama, Ehime, 799-2430, JAPAN; 2: Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, JAPAN;

If you want to see the system, go

 to the Booth 1 \& 2.

Poster code 2,1016

The unique automated sample preparation system, GO-HT series, have been on the European market since 2015. The system is authorized as a validated method by some European accreditation laboratories. In the same way, the EU commission has adopted legislation to reduce or halt the sale and use of certain brominated flame retardants (BFRs) in order to protect human health and the environment. The EFSA recommended the monitoring of BFRs in foodstuffs based on commission recommendation 2014/118. Therefore, the demand for viable technologies for the simultaneous analysis of PCDDs/PCDFs, PCBs, and PBDEs in foodstuffs has increased in European laboratories. We previously reported a procedure for the simultaneous analysis for PCDDs/PCDFs, PCBs, and PBDEs using the system. The method is much more effective than manual purification steps, which involve complicated operations. In this presentation, we report the simultaneous analysis of PCDDs / PCDFs / PCBs / PBDEs in feed and food samples as an application of the developed system. Based on the results of the quality control samples, real samples (unknowns), procedure blanks, and standard reference materials (SRMs), the fractionations of PCDDs / PCDFs / PCBs / PBDEs, limit of quantification (LOQ), accuracy, and recoveries are discussed.

CONCLUSIONS

The ways of efficient elution of PBDEs from Si-column: following two methods,

1. Adding small amount of Ethyl acetate to the sample solution, However, it depends on the sample species and sample volume / weight. So, this way is helpful for the laboratories that usually implement the inspection of the common foodstuff products.
2. Increasing elution volume, $140 \sim 160 \mathrm{~mL}$ of n -hexane at 60 dC . It is not affected by the sample species, etc. So, this method is effective for the laboratories that usually treat the many sample species.
The background level of column and system of 209-decaBDE is extremely near zero.
The recoveries and trueness of PCDDs/PCDFs and PCBs were obtained good results to all the samples. Trueness of PBDEs obtained by use of CRM is within $\pm 20 \%$.

SAMPLE PREPARATION

Mobile Phase	Additive	Polarity	Boiling point dC	Structure
n -Hexane	---	1.88	69	\cdots
n -Heptane	---	1.92	98	\cdots
Cyclohexane	---	2.02	80	\square
n -Hexane	Toluene	2.38	110	为
	Ethyl acetate	6.02	76	$\stackrel{\mathrm{O}_{3} \stackrel{\circ}{\mu}_{\mathrm{O}}^{\mathrm{O}} \mathrm{CH}_{3}}{ }$
	THF	7.58	65	\square
	DCM	8.93	40	
	2-propanol	20.33	98	
	Acetone	20.70	56	$\underset{\mathrm{H}_{3} \mathrm{C}}{\stackrel{\circ}{\stackrel{\circ}{\mathrm{CH}_{\mathrm{CH}}^{3}}} \mathrm{C}_{2}}$

The normal method requires 90 mL of n -Hexane as mobile phase for elution of PCDDs/PCDFs and PCBs from Si-column. However, It is difficult to elute PBDEs from Si-column with only n-hexane, because PBDEs are strongly adsorbed on the silica gel because of higher polarities and stronger interaction that occurs between a halogen (bromine) atom (Lewis acid) and a Lewis base (silica gel). (Halogen bond: $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$)

Recoveries of PBDEs in the PCB fraction (When using Additive eluents)

THF X

Toluene X
Affected the fractionation

Recoveries of PBDEs in the n-hexane eluted from only Multi-layer silica gel column

	60dC Hex +1 mL EtAc			60dC Hex				Room Temp Hex + 1 mL EtAc				Room Temp Hex					
	70 mL	80 mL	90mL	90 mL	120 mL	140 mL	160 mL	90 mL	120 mL	140 mL	160 mL	90 mL	120 mL	140 mL	160 mL	180 mL	200 mL
\#3-MoBDE	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
\#7-DibDE	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	6\%	6\%	5\%	0\%	0\%	0\%	0\%	0\%	0\%
\#15-DibDE	102\%	105\%	107\%	11\%	77\%	104\%	104\%	48\%	96\%	97\%	105\%	0\%	0\%	0\%	0\%	10\%	91\%
\#17-TriBDE	53\%	51\%	46\%	0\%	0\%	25\%	39\%	14\%	75\%	86\%	86\%	0\%	0\%	0\%	0\%	0\%	0\%
\#28-TriBDE	103\%	99\%	101\%	10\%	70\%	100\%	102\%	57\%	92\%	99\%	99\%	0\%	0\%	0\%	0\%	4\%	59\%
\#49-TeBDE	103\%	107\%	100\%	1\%	62\%	100\%	100\%	49\%	90\%	100\%	98\%	0\%	0\%	0\%	0\%	1\%	18\%
\#71-TeBDE	113\%	106\%	101\%	0\%	44\%	97\%	110\%	43\%	91\%	102\%	105\%	0\%	0\%	0\%	0\%	0\%	5\%
\#47-TeBDE	103\%	109\%	102\%	3\%	70\%	107\%	110\%	58\%	95\%	104\%	108\%	0\%	0\%	0\%	0\%	1\%	25\%
\#66-TeBDE	100\%	106\%	99\%	6\%	66\%	99\%	108\%	59\%	97\%	108\%	105\%	0\%	0\%	0\%	0\%	2\%	33\%
\#77-TeBDE	97\%	107\%	103\%	2\%	68\%	105\%	110\%	61\%	101\%	107\%	113\%	0\%	0\%	0\%	0\%	1\%	26\%
\#100-PeBDE	102\%	107\%	105\%	43\%	83\%	97\%	107\%	84\%	92\%	98\%	98\%	0\%	0\%	1\%	4\%	34\%	91\%
\#119-PeBDE	101\%	110\%	109\%	50\%	91\%	95\%	107\%	88\%	99\%	101\%	98\%	0\%	0\%	3\%	12\%	68\%	93\%
\#99-PeBDE	104\%	109\%	110\%	8\%	67\%	102\%	103\%	66\%	95\%	102\%	102\%	0\%	0\%	0\%	0\%	2\%	30\%
\#85-PeBDE	96\%	102\%	99\%	0\%	0\%	60\%	88\%	34\%	86\%	97\%	97\%	0\%	0\%	0\%	0\%	0\%	0\%
\#126-PeBDE	101\%	110\%	103\%	8\%	70\%	102\%	112\%	70\%	103\%	104\%	110\%	0\%	0\%	0\%	0\%	2\%	34\%
\#154-HxBDE	108\%	109\%	107\%	47\%	94\%	108\%	109\%	88\%	98\%	107\%	104\%	0\%	1\%	2\%	6\%	46\%	96\%
\#153-HxBDE	113\%	108\%	107\%	8\%	75\%	106\%	111\%	69\%	96\%	107\%	105\%	0\%	0\%	0\%	0\%	1\%	29\%
\#138-HxBDE	101\%	102\%	103\%	0\%	0\%	63\%	96\%	39\%	86\%	95\%	104\%	0\%	0\%	0\%	0\%	0\%	0\%
\#156-HxBDE	104\%	110\%	108\%	0\%	33\%	88\%	110\%	51\%	99\%	110\%	123\%	0\%	0\%	0\%	0\%	0\%	1\%
\#184-HpBDE	118\%	91\%	117\%	70\%	104\%	101\%	117\%	102\%	109\%	114\%	118\%	0\%	0\%	6\%	23\%	83\%	90\%
\#183-HpBDE	106\%	97\%	100\%	2\%	61\%	86\%	95\%	60\%	89\%	107\%	100\%	0\%	0\%	0\%	0\%	1\%	17\%
\#191-HpBDE	110\%	106\%	82\%	5\%	67\%	91\%	98\%	74\%	108\%	122\%	113\%	0\%	0\%	0\%	0\%	2\%	28\%
\#197-OcBDE	109\%	113\%	99\%	8\%	69\%	98\%	105\%	75\%	93\%	98\%	107\%	0\%	0\%	0\%	0\%	1\%	22\%
\#196-OcBDE	117\%	119\%	108\%	0\%	17\%	77\%	102\%	48\%	92\%	96\%	101\%	0\%	0\%	0\%	0\%	0\%	1\%
\#207-NoBDE	109\%	104\%	117\%	0\%	50\%	106\%	112\%	65\%	95\%	112\%	108\%	0\%	0\%	0\%	0\%	0\%	3\%
\#206-NoBDE	110\%	113\%	116\%	0\%	0\%	53\%	89\%	47\%	93\%	112\%	112\%	0\%	0\%	0\%	0\%	0\%	0\%
\#209-DeBDE	100\%	123\%	106\%	0\%	0\%	71\%	95\%	59\%	77\%	91\%	99\%	0\%	0\%	0\%	0\%	0\%	0\%
Requir	d Vo	70	L	$140^{\sim 160 m L}$				$140 \sim 160 \mathrm{~mL}$				$\gg 200 m L$					

Recoveries of PBDEs in the samples

13C-Iabeled PBDEs									(no adding ethyl acetate)											
	Pig fat	RapeSeed	Rice	Olive	$\begin{array}{\|c\|} \hline \text { Sesame } \\ \hline 3 \mathrm{~g} \\ \hline \end{array}$	Soybean 3 g	$\frac{\text { Palm }}{3 \mathrm{~g}}$		Sunflower			Mineral			Raw milk fat			Butter		
	3 g	3 g	3 g	3g					3 g		2g	0.5 g	1.0	0g	2.5g	2.0 g	1.58	2.58	2.08	1.5g
\#3-MobDE	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
\#15-DiBDE	85.7	92.5	68.3	90.6	75.4	71.0	82.7		84.3		86.8	0.0	0.0		114.7	97.2	70.1	85.2	80.9	21.8
\#28-TriBDE	80.7	96.1	61.7	83.3	75.4	69.8	85.6		83.2		87.0	0.0	0.0		107.8	94.6	77.0	90.7	86.5	21.6
\#47-TeBDE	94.3	85.0	78.0	77.3	80.3	77.3	86.1		78.4		86.1	0.0	0.0		92.4	79.0	75.0	81.0	62.0	4.6
\#99-PeBDE	82.4	96.7	78.2	66.6	74.8	67.0	102.2		85.1		84.7	0.0	0.0		84.2	78.2	61.5	81.9	68.1	11.0
\#154-HxBDE	95.7	86.7	69.6	75.8	98.2	79.0	81.3		78.0		86.5	0.0	0.0		57.6	88.7	69.8	93.9	93.6	75.6
\#153-HxBDE	87.5	77.9	74.8	78.9	92.0	67.2	88.8		77.9		82.1	0.0	0.0		62.8	66.7	58.4	67.3	61.5	7.8
\#183-HpBDE	98.1	78.0	77.8	81.7	89.0	76.6	86.9		73.4		82.7	0.0	0.0		83.5	81.9	72.1	85.0	53.8	3.7
\#197-Ocbot	128.7	117.8	103.5	122.8	111.5	89.8	120.8		91.7		109.5	0.0	0.0		125.1	126.6	99.6	109.9	99.0	5.2
\#207-NobDE	84.8	80.7	76.6	70.8	76.2	70.6	104.0		76.2		90.3	0.0			107.3	61.7	72.7	76.8	6.6	0.0
\#209-DeBDE	28.4	34.9	50.4	25.7	42.4	34.4	34.1		44.2		56.4	0.0	0.0		32.2	0.0	0.0	0.0	0.0	0.0
		Compound Fee	d for fish		2 Compoun	nd Feed for fish				Compou	ound Fee	for fish				h liver oil			Fish oil	
	3 B	2 g	1 g		3 B	2 g	${ }_{1} \mathrm{~g}$		3 g		2 g	1 g		3g		2.58	2 g	2 g	1.5g	1 g
\#3-MobDE	0.0	0.0	0.0		. 0	0.0	0.0		0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
\#15-DibDE	82.4	49.9	0.0		4.4	48.5	0.0		93.6		86.0	1.0		53.9		68.8	54.3	78.2	43.1	0.0
\#28-TTiBDE	90.0	64.8	0.0		9.3	51.7	0.0		97.8		91.4	0.0		73.1		81.7	70.6	91.5	44.4	0.0
\#47-TeBDE	86.0	50.0	0.0		3.3	47.2	0.0		97.7		69.8	0.0		92.8		89.4	78.6	86.1	9.0	0.0
\#99-PeBDE	77.2	72.0	0.0		3.1	54.8	0.0		88.6		76.9	0.0		127.6		73.0	83.2	78.0	22.0	0.0
\#154-HxBDE	88.8	59.4	0.0		3.2	57.8	0.0		80.5		78.6	13.4		60.9		74.3	67.8	79.2	67.3	3.7
\#153-HxBDE	66.5	50.7	0.0		0.9	42.5	0.0		72.0		60.1	0.0		68.6		69.5	52.1	62.1	16.3	0.0
\#183-HpBDE	84.6	59.1	0.0		2.4	56.3	0.0		102.6		51.6	0.0		89.6		68.4	46.0	57.6	0.0	0.0
\#197-OcBDE	110.4	125.8	0.0		9.9	74.0	0.0		126.6		103.5	0.0		126.1		120.5	125.4	103.6	0.0	0.0
\#207-NobDE	92.7	23.9	0.0		4.4	36.9	0.0		109.5		6.7	0.0		95.6		69.8	0.0	20.9	0.0	0.0
\#209-DeBDE	46.3	0.0	0.0		0.1	0.0	0.0		59.8		0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
		Salmon				Egg fat						uitry				Poultry liver fat			Bovine	
	3 g	2.5g	2 g	3 g	2.5 g	\| 2.0 g		1.5g		3 g		2.5 g	2.0 g		1.5 g	1 g	0.5g	2.5 g	2.0 g	1.5g
\#3-MOBDE	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
\#15-Dibde	109.4	75.9	72.2	84.6	54.0	47.0		60.3		69.9		18.3	71.7		10.2	0.0	0.0	77.8	80.9	67.6
\#28-TTiBDE	99.6	80.4	79.4	87.5	63.3	56.8		69.0		72.8		107.5	80.1		11.2	0.0	0.0	80.3	81.3	75.4
\#47-TeBDE	90.7	95.8	84.7	95.4	74.8	62.6		79.8		88.1		96.6	91.7		3.6	0.0	0.0	89.6	61.4	73.2
\#99-PebDE	86.9	80.2	70.1	87.6	65.8	55.3		69.3		82.2		70.6	74.8		7.1	0.0	0.0	77.1	80.4	68.5
\#154-HxBDE	107.8	105.5	110.7	100.7	103.9	108.7		103.4		94.3		98.1	101.8		54.2	0.0	0.0	98.1	86.8	96.4
\#153-HxBDE	90.2	96.0	96.8	95.2	78.0	66.6		73.8		89.2		82.6	86.2		9.0	0.0	0.0	80.5	68.3	78.5
\#183-HpBDE	78.4	94.4	83.2	91.6	82.9	70.3		77.7		97.2		74.3	83.2		5.6	0.0	0.0	88.2	60.9	69.9
\#197-OcBDE	103.8	132.2	120.2	119.7	94.5	113.9		114.6		104.5		15.2	104.6		14.6	0.0	0.0	120.0	119.2	98.6
\#207-NoBDE	90.0	94.7	85.9	84.7	66.2	72.7		82.0		77.7		96.6	79.5		0.0	0.0	0.0	89.8	53.2	36.4
\#209-DeBDE	31.6	43.5	18.5	45.2	34.9	29.1		40.0		35.4		28.4	24.3		0.0	0.0	0.0	33.0	0.0	0.0

The recoveries of \#209-BDE of all the samples are lower. This indicates that it is difficult to elute \#209-BDE from Si-column with only 90 mL of n -hexane. Notably, the recoveries of the following samples are not very good, less than 1 to 2 g of Mineral oil, raw milk fat, butter, some feeds, fish liver oil, fish oil, poultry liver fat, and bovine (beef meat) fat.

Native PBDEs

	Milk fat 2.5g			Butter 2.5g		
Hexane	140mL	90 mL	90 mL	140 mL	90 mL	90 mL
Ethyl Acetate	---	0.2 mL	0.4 mL	---	0.2 mL	0.4 mL
\#3-MoBDE	0\%	0\%	0\%	0\%	0\%	0\%
\#7-Dibde	0\%	0\%	0\%	0\%	0\%	0\%
\#15-DibDE	116\%	101\%	79\%	102\%	100\%	107\%
\#17-TribDE	66\%	68\%	7\%	54\%	52\%	68\%
\#28-Tribde	118\%	112\%	75\%	107\%	106\%	111\%
\#49-TeBDE	106\%	109\%	59\%	97\%	97\%	103\%
\#71-TeBDE	106\%	108\%	67\%	97\%	94\%	109\%
\#47-TeBDE	119\%	121\%	86\%	101\%	97\%	104\%
\#66-TeBDE	112\%	106\%	67\%	103\%	88\%	97\%
\#77-TeBDE	108\%	88\%	64\%	94\%	64\%	73\%
\#100-PeBDE	102\%	115\%	84\%	105\%	100\%	99\%
\#119-PeBDE	102\%	116\%	80\%	108\%	104\%	105\%
\#99-PeBDE	111\%	113\%	85\%	104\%	98\%	100\%
\#85-PeBDE	105\%	119\%	81\%	110\%	86\%	92\%
\#126-PeBDE	101\%	94\%	68\%	105\%	72\%	65\%
\#154-HxBDE	117\%	105\%	81\%	104\%	97\%	107\%
\#153-HxBDE	118\%	105\%	83\%	109\%	100\%	98\%
\#138-HxBDE	115\%	99\%	86\%	118\%	88\%	101\%
\#156-HxBDE	124\%	82\%	69\%	100\%	69\%	79\%
\#184-HpBDE	90\%	114\%	72\%	83\%	73\%	79\%
\#183-HpBDE	106\%	120\%	79\%	88\%	104\%	115\%
\#191-HpBDE	94\%	119\%	118\%	120\%	118\%	116\%
\#197-OcBDE	107\%	95\%	74\%	91\%	83\%	91\%
\#196-OcBDE	103\%	85\%	72\%	77\%	82\%	94\%
\#207-NoBDE	108\%	106\%	72\%	99\%	82\%	98\%
\#206-NoBDE	115\%	119\%	84\%	102\%	75\%	116\%
\#209-DeBDE	107\%	118\%	61\%	90\%	82\%	85\%

The recoveries of \#209-BDE obtained by improved two methods seem to be better than normal method. However, The way of addition of ethyl acetate should be valided one step further to each sample.

CHROMATOGRAMS OF PROCEDURE BLANK

(BD-5HT, 15m, 1 injection measurement)

VALIDATION: RESULTS OF SRM

Cod liver oil 1 g (CIL, EDF-5463)

